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Comparison principles

Consider the variational problem

min &(u, f).

ueX

Goal: Find structural conditions on £ so that: ordered data
fi1 < f, give ordered solutions

u(fi) < u(f).




77:(/1’5 V) = infﬂ'él_l(p,,l/) [ C(va) dm = Supq& f ¢ d,lt - f(bc dv.

1. Comparison principle for JKO-type problems.

Theorem. H = convex internal energy. Let u; < pp and
v; = argmin, Tc(pi, v) + H(v). Then vy < vsp.

2. Comparison principle for Kantorovich potentials.

Theorem. & (u,v) = set of Kantorovich potentials. Take
oi € Oc(pi,v). If 3 < pp and boundary conditions, then
1A P2 € Oc(p1,v) and @1V ¢p € O (2, V).

3. Proofs via submodularity and exchangeability.



Motivation: Why comparison principles?

min E(u,f).

e Control of the solution u(f): solve equation for a “simple”
fo > f (fo = constant, linear, Gaussian...), then we know
u(f) < wp = u(fo).

Particular case: when constants are preserved we have a
maximum principle: max v = max f.

e Uniqueness. w1, up two solutions for f, then u; < up and
up < g — U = Up.



Motivation: Why comparison principles?

e [ contraction [Crandall, Tartar '80]

Suppose that the mapping f +— u(f) preserves mass.
Then comparison principle i < f, = u(fi) < u(h)
implies

lu(fr) — u(R)]| < 1A = Rl

(Exists also with an L flavor).



Comparison principle for JKO problems

Setting. Q, Q* two compact metric spaces, ¢ € C(Q x Q%),

Te(p,v) = inf /c(x,y) drm.

meN(p,v)

Consider the JKO problem: given p € M4(R), solve

[ c ) Hm 0
e ATL?Q*)T(M v) + Hm(v)

Here Hm(v) = Jq. h(9%) dm, where h: [0, +00) — R is a strictly
convex, |.s.c. and superlinear function, and m € M (Q) is a fixed
reference measure.



Comparison principle for JKO problems

[L., Sylvestre, '25, A comparison principle for variational problems]

4 )
Theorem. For i = 1,2, let p; € M () and

vi = argmin Tc(ui,v) + Hm(v).
VEM(92¥)

Then

p1 < pp = vi < .




Comparison principle for JKO problems

[L., Sylvestre, '25, A comparison principle for variational problems]

4 )
Theorem. For i = 1,2, let p; € M () and

vi = argmin Tc(ui,v) + Hm(v).
vEM (%)

Then
p1 < pp = vi < .

e Minimal assumptions. Uniqueness from assumptions on H,,.

e A similar result was obtained in [Jacobs, Kim, Tong '22] when a
transport exists and ¢ is CL_ and twisted.



Proof via exchangeability of 7¢ allows extensions to:

Entropic cost Tecc(i, V) = infrenur) [ ¢ dm + e KL(7|R).

Unbalanced cost UOT (1, v/).

Other nonlinearities

T(M? V) = infﬂél’l(u,u) fg(X7Y7 dT‘—/dR) dR.

e KL(u,v) or more general Csiszar divergences Dp(p, ).



Maximum principle: if every constant is a fixed point, e.g.
c(x,y) = |x — y[2, then

< Gy = solution v < (.



Maximum principle: if every constant is a fixed point, e.g.
c(x,y) = |x — y[2, then

< Gy = solution v < (.

Evolution: Think of
1
p'(t+ 1) = argmin 2—W22(;f(t)./ v) + Hm(v).
v T

Then u7(0) < 15(0) implies pf(t) < p3(t).
As 7 — 0: comparison of the continuous evolution.



Maximum principle: if every constant is a fixed point, e.g.
c(x,y) = |x — y[2, then

< Gy = solution v < (.

Evolution: Think of
1
p'(t+ 1) = argmin 2—W22(;f(t)./ v) + Hm(v).
v T

Then u7(0) < 15(0) implies pf(t) < p3(t).
As 7 — 0: comparison of the continuous evolution.

L* contraction: [[13(t) — #3(t)lls < [115(0) — 15(0) 1.



Comparison principle for Kantorovich potentials

Setting. Q, Q* two compact metric spaces, ¢ € C(Q x Q*). Then

Te(p,v) = sup /(bdu /qﬁcdu

e C(Q

Here ¢°(y) = sup,cq c(x,y) — ¢(x).

S (p,v) C C(Q): set of solutions, # (.
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Comparison principle for Kantorovich potentials

[L., Sylvestre, '25, A comparison principle for variational problems]

-
Theorem. pu; € P(Q), v € P(Q*), ¢i € c(pi,v), U C Q.

Then

{,ul <pup onU {¢1 A g2 € ®c(p1,v)
—
p1<¢o onQ\U P1V ¢z € Oc(p2,v).

And ¢1 < ¢ on the support of pp — p1.

e Natural setting for principal—-agent.

e Transport problem can be continuous, discrete, and can be
extended to entropic OT, UOT, and so on.
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If uniqueness of Kantorovich potentials (up to an additive
constant) then conclusion becomes ¢1 < ¢».

If nonuniqueness, comparison principle on the solution sets.

-

When Fi, F; are sets of functions, F; <g F» in the strong
set order or Veinott order if

Yup € Fi,up € Fo, ui Aup € F1, and u1 V up € Fo.

Implies in particular that inf 73 < inf F, and sup F; < sup/,
when inf and sup exist.
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Taking 1 = pp = u: Set of Kantorovich potentials ®.(u, v) is
stable by A and V (lattice).

Recovers the comparison principle for Monge—Ampeére: given a
bounded open set U C R", solve

{det D’u=f

u is convex.

Key insight: for any E C U,

/ det D?u = (Vu*)x Leb.
E

13



Submodularity and exchangeability



Submodularity

Q a compact metric space, X = C(Q).

Definition. £: X — RU {400} is submodular if

E(¢1 A ¢2) + E(¢1V ¢2) < E(¢1) + E(¢2).

e \Well studied in discrete optimization, combinatorics, economics.

e Naturally defined on Banach lattices X = (X, ||-||, <).

14



Intuition: submodularity gives comparison principles

Consider jointly submodular E: X x Y — R U {+00}.
(X, Y functional spaces).
Given data f € Y, solve the variational problem

min E(u, f).

ueX
Let f; < f», with corresponding minimizer uy, up. Then
E(ui ANup, i) + E(un V un, o) < E(ur, A1) + E(u2, ).
Direct consequence:

ur A up € argmin E(+, f1) and uy V up € argmin E(-, f2).

15}



Intuition: submodularity gives comparison principles

Direct consequence:

up A\ up € argmin E(+, f;) and ug V uy € argmin E(-, f).

This is an ordering of the solution sets:

argmin E(-, f;) <s argmin E(-, f).
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Intuition: submodularity gives comparison principles

Direct consequence:

up A\ up € argmin E(+, f;) and ug V uy € argmin E(-, f).

This is an ordering of the solution sets:

argmin E(-, f;) <s argmin E(-, f).
Suppose solution is unique.
Then uy = u1 Aup and up = 11 V o, i.e.

uy < us.
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Submodular functions

Examples.

o E(u) = [ h(Vu(x))dm(x) : as particular cases, the Dirichlet
energy or the perimeter

o E(u)= [[ h(u(x)— u(y)) dm(x,y) for convex h;
o E(u) = [ g(u(x))dm(x) for arbitrary g
o E(u,v)=— [u(x)v(x)dm(x)

Property: submodularity is stable by sum.
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Proof of the comparison principle on Kantorovich potentials

[ Lemma. K(¢)= [q ¢°(y)dv(y) is submodular. ]

Proof. Let ¢1,¢2 € C(2) and fix y € Q*.

¢1(x) — c(x,y) < 6i(y)
$2(x) — c(x,¥) < 5(y),

gives

(91 A d2)(x) — c(x, ) < (61 A 93)(y),
(¢1V ¢2)(x) = c(x,y) < (¢1V $3)(y)-
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Proof of the comparison principle on Kantorovich potentials

Maximizing over x € Q:

(01 A d2)(y) < (65 A d5)(y),
(1 V d2)°(y) < (65 V 05)(y).

Sum:

(01 A d2)(y) + (¢1 V 2)°(y) < 85(y) + #5(y).

Integrating over v gives

K(p1 A ¢2) + K(¢1 V ¢2) < K(o1) + K(¢2). O
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Proof of the comparison principle on Kantorovich potentials

Write ®c(u, v) = argmin J(p, -) with J(p, @) = K(¢) — o ¢ dp.

Proof of the theorem:

J(p1, ¢1 A ¢2) + J(p2, 1V ¢2)+
/Q(<Z51 —¢2) " d(p2 — 1) < J(pa, d1) + J(p2, ¢2). O

Remarks:
e only relies on the submodularity of K.

e Submodularity of K is elementary.
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Exchangeability

X = a Banach lattice (think X = C()).

e N
Theorem. Let £E: X — RU{+o00} be a proper l.s.c. convex
function. Then E is submodular iff F = E* satisfies: for
every i, 2 € X*, and every t1 € [0, (u2 — p1)™], there
exists t1p € [0, (41 — p2)™] such that

L F(p1 + tor — t12) + F(p2 — tor + t12) < Fpa) + F(p2). (1) )

[ Definition. F: X* — RU{+o00} is exchangeable if (1) holds. ]
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Intuition: exchangeability gives comparison principles

Given data 1 € Y*, solve for F: X* x Y* — R U {+o0} jointly
exchangeable

in F(u,7).
Lty )

Take pj € M1(Q2) and n; = argmin F(u;,-) unique. Then

p1 < p2 = N1 = N2

22



Proof of the comparison principle for JKO

Ideas of the proof:

o Te(p,v) =supy [ ¢ dp— K,(¢) = K;(1). Since K, is
submodular, then p+— T¢(w, v) is exchangeable.

e In fact (u,n) — Tc(u, —n) is jointly exchangeable.

e For convex internal energies Hp,, the map

(1,m) = Te(p, —n) + Hm(—n)

is jointly exchangeable.

23



Thank you

https://arxiv.org/abs/2506.18884
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