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The Kim-McCann geometry



The Kim—McCann framework

X and Y are n-dimensional smooth manifolds, and McC X xYisan open subset.
Consider a fonction ¢ € C2(M). M is the ambient space and ¢ is a cost function.
We always assume that the cost ¢(x,y) is nondegenerate in the sense that for each
(z,y) € M, the linear map Vfcyc(x,y): T, X —T,Y is one-to-one.

Definition (Kim and McCann [KM10)|)

The Kim—McCann metric is the pseudo-Riemannian metric on M defined by
G = L ( 0 —ngc>
as,, — 5 2 .
(@y) = 5 -V2,c 0

Recall: pseudo-Riemannian means: at each z € M, J. is a symmetric nondegenerate
bilinear form on TZM X TZM .

Remark. The full (z,y) Hessian of ¢ is not well-defined, but the product structure makes
the cross terms Viyc well-defined. Indeed for fixed y € Y, x — V,¢(x,y) map to the same
space T7Y.



First properties

1. M open C X x Y makes T(x,y)M splitas T, X @ T,Y. f U =D n e T(%y)]\}[ with
£ €T, X and n € T,Y then

JUU) = =V2 c(z,y)(&n) = xzayj 3

2. ¢ has signature (n,n). (Use K(§ ®n) = (—£@n).)

3. —Viyc is unaffected by adding to ¢(x,y) a function of x or a function of y. The
Kim—McCann metric captures only the interaction between = and y.



Spacelike submanifolds

Let f: M — M be an embedding. ¥ := f(M) C M is called a submanifold of M. We
often identify M ~ X. If g is a pseudo-Riemannian metric on M then we may define the
pulled back metric g = f*§ on M (= the restriction of § to X).

Definition

Y is spacelike if g is Riemannian.

This means

for any nonzero tangential vector U, g(U,U) = g(U,U) > 0.
(&m)

Most often, X is given as the graph of a map T: X — Y.

Y (@,9)
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Example

X =Y =R", M =R" xR", c(x,y) = —(x,y). Then
. 170 1,

gEon,E@n) = ).

In other words,

Same Kim-McCann metric § for the quadratic cost c¢(z,y) = 3|z — y|* or more generally
Fenchel-Young costs

c(z,y) = u(z) +u*(y) - (z,9),

where u: R™ — R is a convex function (more on this later).



Motivation from Optimal Transport

Optimal transport consists of matching a distribution of points in X with another
distribution of points in Y minimizing the total cost.
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The cross-difference introduced by McCann [McC99, McC14] is

de(’ 95 2,y) = [e(,9') + e(a', y)] = [e(z,y) + (2, )]

Then
Sc(z + & y+mz,y) = —Vaclz,y)(En) + o€ + [nl*)



Geodesics

Consider local coordinates ' on X and % on Y. The only nonzero Christoffel symbols ry 3
are when «, (3,7 are all non-barred or all barred. Then

k km k Em
I3 = emig, L= ema

In general a geodesic is of the form (z(t),y(¢)). Those geodesics for which either the first
on second component is constant in time are of particular interest. They are called
c-segments and admit a “closed form” formula. Indeed (x,y(t)) is a geodesic if

d2

@ch(x,y(t)) =0,
while (x(t),y) is a geodesic if

d2

@Vyc(x(t),y) = 0.

For example, the geodesic joining (z,yo) to (z,y1) takes the form

Vee(z,yt)) = (1 —t)Vec(z,yo) + tVaec(x, yo)-



Curvature

Let R denote the Riemann curvature of §. In local coordinates z?, *, the only nonzero of
R, p~s are when two indices are barred and two unbarred and «, 8 (thus v, d) are of
opposite type.

This can be rephrased as follows. Define K, : T.M — T.M by K(€ ®n) = (—€) &1 and

consider the quadrilinear form Q(U) = R(U, KU, U, KU).
Proposition
R is uniquely determined by Q.

Remark. In general pseudo-Riemannian geometry the Riemann tensor R is uniquely
determined by the unnormalized sectional curvature R(U,V,U, V).



Para-Kahler geometry

The Kim—McCann geometry is an instance of para-Kéahler geometry.

Definition

A para-Ké&hler manifold (M , g, K) consists of a pseudo-Riemannian manifold (M ,3)
together with a (1, 1) tensor field K parallel with respect to the Levi-Civita connection
which is involutive and whose eigenbundles associated with the two eigenvalues +1 and —1
of K have the same rank.
In other words:

» M is a 2n-dimensional smooth manifold;

> At each z € M , §» is a symmetric nondegenerate bilinear form on T.M ;

> At each z € M, K, is a linear map from T, M to T, M

» VK =0 where V denote the Levi-Civita connection of J;

> At each z € M, K 2 = Idy y;- K- is therefore diagonalizable with eigenvalues £1 and

the corresponding eigenspaces TZiM have dimension n.



Remark
We also get for free a symplectic form w = (K-, -).

Remark

The para-complex numbers (aka split-complex or hyperbolic numbers) are z = = + ky with
k? = 1. An algebra similar to complex numbers but not a field since numbers z + kx are
not invertible.



References

The Kim—McCann geometry. Kim and McCann’s original papers [KM10, KM12].
McCann’s review [McC14]. A recent exposition [LV23, Section 2|.

Para-Ké&hler geometry. See the reviews [AIMTO09] and [CFGI6].



Information geometry



Introduction

In information geometry we consider finite-dimensional parametrized subspaces of measures
{1g : 0 € ©} C P(QQ).

Here (2 is say a domain of R? or a smooth manifold. Information geometry assumes © to
be an n-dimensional smooth manifold, called statistical manifold. A typical problem is to
optimize over the py, for instance the maximum likelihood problem is related to
minimizing the function

F(0) = KL(v|p),
where v € P(Q) is given.
Example (Gaussians)

Optimize over the spaces of Gaussians © = R? x Sff_ | parametrized by
0 = (mean, covariance).

Example (Exponential families)

Given s: RY — R” consider the exponential family s (dz) = e5(*):)=A)y(dx), with
© C R". Here A(f) ensures g has mass 1 and v is a fixed reference measure on R<.



Submanifolds 3 from divergences

Consider a triple (X x Y, ¢), as in the Kim-McCann framework. A pair (¢, ) with
¢: X > Rand ¢: Y — R is called c-conjugate if ¢(x) = ¢°(z) := —infy ey c(z,y) + ¥ (y)
and ¥ (y) = ¢°(y) := —infrex c(x,y) + ¢(x). If (¢,4) is c-conjugate we have

D($,y) = ¢($) + w(y) + c(x,y) >0,

with
inf D = inf D =0.
zlex (@) ;ey (@)

Definition

D is called a divergence.

Then a spacelike submanifold ¥ C X x Y can be constructed, under additional mild
assumptions, as the set where X vanishes,

Y={(z,y) € X XY : D(z,y) = 0}.



Observations

1. The cross-differences §p = d.. Therefore the Kim—McCann metrics induced by D and ¢
are the same.

2. Why the vanishing set 3 of D(x,y) can be expected to be spacelike: if (x,y) € ¥ and
(x+&y+mn) €3 then

—_—— —

>0 >0 =0 =0
By 1., 6p = 6. Take £ — 0 and n — 0 then —V2Z, c(z,y)(£,1) > 0. (¥ is c-monotone).
3. Oftentimes we consider costs c(x,y) satisfying

inf = inf ¢(z,y) = 0.
it e(e ) =hntie(Z )

Then (¢ = 0,v¢ = 0) is a c-conjuate pair and ¢ is directly a divergence, D(z,y) = c(x,y).
Example. A squared Riemannian distance c(z,y) = d?(z,y).



Example: Fenchel-Young gap functions

Consider cost ¢(z,y) = —(x,y) on R™ x R". The Kim-McCann metric is
.10 I,
=30 )

Let u € C?(R") be a strictly convex function and consider the divergence

D vanishes on ¥ = {(x, Vu(x))} and the induced Riemannian metric is Hessian,

g = Vu.



Pulled back divergences

Back to statistical manifolds. In practice the divergence D on © x O is often pulled back
from a “divergence” D on P(Q2) x P(£),

D<97 8/) = D(M@a /1/9’)-

Example

The Kullback-Leibler divergence or relative entropy D(y, 1) = [, log(dp/dp’) dp.
Under certains assumptions the diagonal of ©® x © is spacelike and the Kim-McCann
metric on ¥ is the Fisher information

Oln g Oln g

pig(d).

Other ezamples. The Hellinger divergence D(u, 1') = [o,(v/du/dv — \/dp' [dv)* dv.
The squared Wasserstein distance D(u, p') = Wi (p, p1').



Example: exponential families

Given s: RY — R”, recall the exponential family pg(dz) = e*(®)-9)=40)y(dz), with
© C R™. The pullback of the KL divergence takes the form

d

D(0,0') = / 1n( - ) dpg = A(0') — A(0) — (VA(0),0 — 6).
re  Ndpg

This is the Bregman divergence of A.

Here ¥ is the diagonal and the Fisher information metric metric is the Hessian metric

V2A(6).



Classical submanifold theory

Let (M ,§) be a pseudo-Riemannian manifold and f: M — M be an embedding. Define
the submanifold ¥ = f(M) ¢ M and g = f*§ on M (or ).

Let U,V be tangential vector fields on 3. To obtain an affine connection on ¥ we want to
project V'V onto TE. The classical way is to project orthogonally and obtain a
connection ViV on 2. It turns out V is nothing else than the Levi-Civita connection for g.

Classically there are then three notions of curvatures on ¥: R, R and the second
fundamental form II: TM x TM — T+M defined by

II{U, V) =VyV - VyV.

The mean curvature H € T+ is then a normal vector field defined as the trace of IT
(with respect to g).
R, R are intrinsic while I, H are extrinsic.



Information geometry’s dual connections

Information geometry takes a different approach. Due to the special product structure
X x Y it defines instead two connections V', V2 on ¥ which are different from the
Levi-Civita V coming from ¢g. Given tangential U, V', project onto TX and TY
respectively,

VLV =1 (VyV),
VZV = 7¥(VyV).

It turns out that (V! + V?) = V. The classical (V, II) are replaced by (V!, V).

There are three notions of curvatures R, R!, R2.



References

The presentation roughly follows Wong and Yang [WY22|. See also the nicely written
review of Khan and Zhang [KZ22].

A classical reference for information geometry is the textbook of Amari [Amal6]. See also
the review of Nielsen [Nie20] and Mishra, Kumar and Wong [MKW23].



Application to gradient descent-type schemes



Introduction

We want to iteratively minimize a differentiable function f: X — R, where X is a smooth
manifold. Since there is no metric on X, we cannot follow the “direction of steepest
descent”. Indeed, the differential V f(z) is a covector (i.e. a one-form) rather than a
tangent vector.

Motivating example. Let V be an n-dimensional real vector space, and f € C1(V).
Then an update of the type ;11 — 2 = —V f(z) doesn’t make sense since

ZTpt1 — xp € V while V f(z) € V*. But if we choose a map T: V — V* then we can go
back-and-forth between V' and V* and have a working scheme. Remark: an inner product
(-,-) induces a canonical map V — V*.



Basic setting

X and f € C'(X) are given. Choose an n-dimensional manifold Y (the “dual space”) and a
nondegenerate cost ¢ € C%(X x Y). Choose a n-dimensional submanifold ¥ ¢ X x Y
which is the graph of a diffeomorphism 7: X — Y. ¥ acts as our one-to-one
correspondence between X and Y.
Define F': X xY — R by

Flz,y) = ().

Note that VF =V f@®0. The Kim—McCann metric provides a gradient grad F' = g_lﬁF .
Due to the special structure of g and F', the gradient is of the form grad F' = 0 & 7, where
(in coordinates)

w0l

= —El——
L oxJ



Gradient descent with a general cost (GDGC)

This suggest the following iterative method (GDGC, [LAF23]).

Given (g, yr) € 2.
y-update: compute exp,, ,.)(—grad F') =: (zg, y4+1)
x-update: (141 1,Yrsr1) € 2.

Here exp uses the ambient Kim—McCann connection Von X x Y, in particular it leaves 3.
Then map back into X.
The exponential map exp(, ,(0 @ 7) admits a closed-form formula.

Under mild assumptions GDGC can be written as

—Val(Tr, Yrt+1) = =V f(zr),
Vee(Thi1, Ykt1) = 0.



Example: mirror descent

Suppose we are given an objective function f: V' — R where V is an n-dimensional vector
space, without inner product. Let u € C?(V) be a strictly convex function and consider
the Fenchel-Young divergence c¢(z,y) = u(z) + u*(y) — (x,y) on V x V*, vanishing on the
subset ¥ = {(x, Vu(x))} C V x V*.
1
The ambient Kim—McCann metric is § = 3 (IO Ié’), ie. gl€ancadn) =(&n). The
n

induced Riemannian metric on ¥ can be written (in “z-coordinates”) as the Hessian metric
g = Vu(x), i.e. g(& &) = V2u(x)(£,€). Indeed if € @ n is tangent to ¥ then n = V2u(x)E.
Instantiate the GDGC method: Given z € V and y, = Vu(xg):

» y-update: yr11 = yr — Vf(xx) (flat connection).
» z-update zx11 = (V) " (yri1)-

We obtain the mirror descent update

Vu(zgy1) — Vu(zg) = =V f(zg).



Other examples

f € CY(V), strictly convex u € C?(V), Bregman cost c(z,y) = u(y) — u(z) — (Vu(x),y — x)
on V x V, with ¥ =diagonal. Then GDGC=natural gradient descent

Tkl — T = —Vzu(xk)_IVf(xk).

(M, g) Riemannian manifold, f € C*(M), squared geodesic cost c(z,y) = 5=d3,(x,y) on
M x M with 7 > 0, and ¥ =diagonal. Then GDGC=Riemannian gradient descent

Try1 = exp,, (—TV f(xr)).



More to explore

1. When f(z) = infyey c(z,y) + h(y) (f is c-concave), GDGC can be formulated as the
alternating minimization of
c(z,y) + h(y)-

This is a nonsmooth formulation valid in infinite dimensions [LAF23].
2. There are implicit and forward-backward (explicit-implicit) extensions [LAF23].

3. The condition R(U, KU,U,KU) > 0 is known as nonnegative cross-curvature
(NNCC) [KM10, KM12|. Under NNCC convexity of the objective f along c-segments
provides rates of convergence [LAF23|. Moreover NNCC admits a synthetic formulation
applicable to infinite-dimensional spaces [LTV24].



Apriori estimate in optimal transport



Optimal transport setting

This section is based on [BLMR24].

X and Y are two n-dimensional smooth manifold, M C X x Y is an open domain and
cE C4(M ) is a nondegenerate cost. p and v are two smooth probability measures on X
and Y respectively.

In the optimal transport problem we want to find a map 7: X — Y pushing u to v,
which minimizes the total cost

. c(x, T(x)) du(x). (4.1)

1. Problem (4;1) can be formulated as a minimeat maximal surface problem,
Y =gral C M.

2. New, geometric proof of the Pogorelov-style Ma—Trudinger—Wang estimates
|DT(z)| < C

(Lipschitz bound on the transport map).



Background on submanifold theory

Let f: M — M be an embedding. ¥ = f(M) C M is called a submanifold of /. Identify
M ~ %. If § is a pseudo-Riemannian metric on M then we may define g = f*§ on M (or
¥).

There are three notions of curvatures on X: R, R and the second fundamental form
II: TM x TM — T+M defined by

II(U, V) =VyV - VyV.

The mean curvature H € T+Y is then

a normal vector field defined as the trace of II (with respect to g). H
Recall &
the first variation formula: for compact Riemannian submanifolds

the mean curvature is “minus the gradient” of the area functional.




Kim—McCann—Warren

Define the conformal factor y: M =R by

(2,1)" = dp®@v) _ dp/dr(x)dv/dy(y)
A dvolgm |det Vyye(z,y)|

where volky denotes the volume form of the Kim—McCann metric and du/dx, dv/dy
denote the densities of 1 and v in local coordinates. R
In [?] Kim, McCann and Warren introduced the pseudo-Riemannian metric on M

0 -V2.c
§=M%w< > “)- (42)
—VizyC 0
Kim, McCann and Warren show

Theorem ([KMW10])

For the Kim—McCann-Warren metric (4.2), the submanifold ¥ C M s spacelike
mazimizing. In particular it has zero mean curvature.



A priori estimate

Recall we are interested to show |DT| < C. This can be shown to be equivalent to an
upper bound on g, where g denote the restriction of § to ¥. Geometrically, g to be
compared to something. We therefore fix an ambient Riemannian metric S on M and
denote by S its restriction to X. There are two main ingredients.

Ingredient 1. The Kim-McCann-Warren metric satisfies on ¥

vol(g) = p,

therefore the product of the eigenvalues of g is bounded above and below.
Ingredient 2. the Ma-Trudinger-Wang condition (x > 0)

REM(U, KU, U, KU) > x(S(U,U)S(KU, KU) — S(U, KU)?)
for null U i.e. g(U,U) = 0.

Remarks. QKM(U, KU,U,KU) = Q(U) is the para-Kéhler quadrilinear form.
S(U,U)S(V,V) — S(U,V)?: transforms like a curvature tensor.



Approach: bound g > C~1S on ¥, i.e.

S < Cyg.

Proposition (|[BLMR24])

At any point p € ¥, let (e;) denote a g-orthonormal basis of T,% that diagonalizes S. Then
at p,

£ 1 (AS)(en,en) -
;R(el, €n, €l en) < im + CZS(Gh er).

1=1
Maximum principle. At a point pg € ¥ where S maximizes its largest eigenvalue A,

relative to g we have (AS)(en,e,) < 0, where (e;) is g-orthonormal and S(e;, e;) = X;d;;.
Therefore at the point pg,

n—1
Z R(ela €n, €1, en) S CS(en, en).
=1



Using the MTW condition (Ingredient 2):

n—1

Y u<c
=1

Ingredient 1 (Monge-Ampére equation) =~ product of the eigenvalues is bounded above
and below. Conclusion:

An < C.



Formal Taylor expansion of entropic optimal transport



Problem formulation

This section is based on work in progress.

X and Y are two n-dimensional smooth manifolds, and ¢ € C*(X x Y) is a nondegenerate
cost. u and v are two smooth probability measures on X and Y respectively. Finally € > 0
is a temperature parameter.

The entropic optimal transport problem is

Toetwr) = min [[  clo,y)dn(e,y) + eKLirl x ).
’ mell(p,v) XxY

Here TI(u, v) consists of all the joint probability

measures on X X Y with respective marginals p and v.

When € = 0 we recover

the optimal transport problem. Under some assumptions 7 is
concentrated on a set ¥ which is the graph of a map 7T: X — Y.
When e > 0, the support of 7 is all of X x Y. e

]

)




Kim—McCann geometry

Let g denote the Kim—McCann metric on X x Y with respect to ¢(z,y) and X the graph of
an optimal transport map (i.e. taking € = 0).

)y =
c—0 e>0
> = zero set of the divergence
¢0(q;) + 'L/)O(y) + c(m, y) > 0. e (dx, dy) = e—[¢s(x)+¢z(y)-‘rc(w,y)]/eu(dx)y(dy)

Question: formal asymptotics as & — 0.



Formal results

Let H denote the mean curvature of ¥ and K the para-complex structure. Then K H is a
tangential vector field. Let my denote the optimal transport plan (for e = 0).
Solve for a potential V: ¥ — R the elliptic PDE A,V = div,(KH), in the weak sense

Vh € C2 (D), /g(vv,Vh) dw:/g(KH,Vh) dr.
3 >

This is the natural projection of K H onto gradient vector fields.
Theorem (Formal)

Define f: £ =R by e V= e vol(g). Then

P =¢o+ef + 0(5>'



Formal results

Theorem (Formal)
Tee (1) = Teo(ns v) — € In(2me)? — eH (mo| vol(g))
62 2 Lo 5 2 2 2
+§/ [\Vln(ﬂ'o/vol(g)ﬂ + ZRJr R+ E\II| — |VV|?|dmo + o(e?)
D))

Remark: for the quadratic cost on Euclidean space c(z,y) = |z — y|?, Conforti and
Tamanini [CT21| show the €% to be

g2 !
2 ['nipa
8 Jo

where FI is the Fisher information and p; the McCann interpolation between p and v.
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