A lecture on the interface between information geometry, optimization and optimal transport

Flavien Léger

INRIA & Université Paris Dauphine

flavienleger.github.io/slides

Online seminar on statistics and geometry December 13, 2024

The Kim–McCann geometry

Information geometry

Application to gradient descent-type schemes

Apriori estimate in optimal transport

Formal Taylor expansion of entropic optimal transport

The Kim–McCann geometry

The Kim–McCann framework

X and Y are n-dimensional smooth manifolds, and $\hat{M} \subset X \times Y$ is an open subset. Consider a fonction $c \in C^2(\hat{M})$. \hat{M} is the **ambient space** and c is a **cost function**. We always assume that the cost c(x, y) is **nondegenerate** in the sense that for each $(x, y) \in \hat{M}$, the linear map $\nabla^2_{xy} c(x, y) : T_x X \to T^*_y Y$ is one-to-one.

Definition (Kim and McCann [KM10])

The **Kim–McCann metric** is the pseudo-Riemannian metric on \hat{M} defined by

$$\hat{g}_{(x,y)} = \frac{1}{2} \begin{pmatrix} 0 & -\nabla_{xy}^2 c \\ -\nabla_{xy}^2 c & 0 \end{pmatrix}.$$

Recall: **pseudo-Riemannian** means: at each $z \in \hat{M}$, \hat{g}_z is a symmetric nondegenerate bilinear form on $T_z \hat{M} \times T_z \hat{M}$. *Remark.* The full (x, y) Hessian of c is not well-defined, but the product structure makes the cross terms $\nabla^2_{xy}c$ well-defined. Indeed for fixed $y \in Y$, $x \mapsto \nabla_y c(x, y)$ map to the same space T_y^*Y . 1. \hat{M} open $\subset X \times Y$ makes $T_{(x,y)}\hat{M}$ split as $T_xX \oplus T_yY$. If $U = \xi \oplus \eta \in T_{(x,y)}\hat{M}$ with $\xi \in T_xX$ and $\eta \in T_yY$ then

$$\hat{g}(U,U) = -\nabla_{xy}^2 c(x,y)(\xi,\eta) = -\frac{\partial^2 c}{\partial x^i \partial y^{\bar{\jmath}}} \xi^i \eta^{\bar{\jmath}}.$$

2. \hat{g} has signature (n, n). (Use $K(\xi \oplus \eta) = (-\xi \oplus \eta)$.)

3. $-\nabla_{xy}^2 c$ is unaffected by adding to c(x, y) a function of x or a function of y. The Kim–McCann metric captures only the interaction between x and y.

Let $f: M \to \hat{M}$ be an **embedding**. $\Sigma := f(M) \subset \hat{M}$ is called a **submanifold** of \hat{M} . We often identify $M \approx \Sigma$. If \hat{g} is a pseudo-Riemannian metric on \hat{M} then we may define the pulled back metric $g = f^*\hat{g}$ on M (\approx the restriction of \hat{g} to Σ).

Definition

 Σ is **spacelike** if g is **Riemannian**.

This means for any nonzero **tangential vector** U, $g(U, U) = \hat{g}(U, U) > 0$.

Most often, Σ is given as the graph of a map $T: X \to Y$.

$$X = Y = \mathbb{R}^n, \ \hat{M} = \mathbb{R}^n \times \mathbb{R}^n, \ c(x, y) = -\langle x, y \rangle.$$
 Then
 $\hat{g}_{(x,y)} = \frac{1}{2} \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}.$

In other words,

$$\hat{g}(\xi \oplus \eta, \xi \oplus \eta) = \langle \xi, \eta \rangle.$$

Same Kim–McCann metric \hat{g} for the quadratic cost $c(x,y)=\frac{1}{2}|x-y|^2$ or more generally Fenchel–Young costs

$$c(x,y) = u(x) + u^*(y) - \langle x, y \rangle,$$

where $u \colon \mathbb{R}^n \to \mathbb{R}$ is a convex function (more on this later).

Motivation from Optimal Transport

Optimal transport consists of matching a distribution of points in X with another distribution of points in Y minimizing the total cost.

The cross-difference introduced by McCann [McC99, McC14] is

$$\delta_c(x',y';x,y) = [c(x,y') + c(x',y)] - [c(x,y) + c(x',y')]$$

Then

$$\delta_c(x+\xi, y+\eta; x, y) = -\nabla_{xy}^2 c(x, y)(\xi, \eta) + o(|\xi|^2 + |\eta|^2)$$

Geodesics

Consider local coordinates x^i on X and $y^{\overline{i}}$ on Y. The only nonzero Christoffel symbols $\Gamma^{\gamma}_{\alpha\beta}$ are when α, β, γ are all non-barred or all barred. Then

$$\Gamma^k_{ij} = c^{k\bar{m}} c_{\bar{m}ij}, \quad \Gamma^{\bar{k}}_{\bar{\imath}\bar{\jmath}} = c^{\bar{k}m} c_{m\bar{\imath}\bar{\jmath}}.$$

In general a geodesic is of the form (x(t), y(t)). Those geodesics for which either the first on second component is constant in time are of particular interest. They are called c-segments and admit a "closed form" formula. Indeed (x, y(t)) is a geodesic if

$$\frac{d^2}{dt^2}\nabla_x c(x, y(t)) = 0,$$

while (x(t), y) is a geodesic if

$$\frac{d^2}{dt^2}\nabla_y c(x(t), y) = 0.$$

For example, the geodesic joining (x, y_0) to (x, y_1) takes the form

$$\nabla_x c(x, y(t)) = (1 - t) \nabla_x c(x, y_0) + t \nabla_x c(x, y_0).$$

Let \hat{R} denote the Riemann curvature of \hat{g} . In local coordinates x^i , $y^{\bar{\imath}}$, the only nonzero of $\hat{R}_{\alpha\beta\gamma\delta}$ are when two indices are barred and two unbarred and α , β (thus γ , δ) are of opposite type.

This can be rephrased as follows. Define $K_z: T_z \hat{M} \to T_z \hat{M}$ by $K(\xi \oplus \eta) = (-\xi) \oplus \eta$ and consider the quadrilinear form $Q(U) = \hat{R}(U, KU, U, KU)$.

Proposition

 \hat{R} is uniquely determined by Q.

Remark. In general pseudo-Riemannian geometry the Riemann tensor R is uniquely determined by the unnormalized sectional curvature R(U, V, U, V).

The Kim–McCann geometry is an instance of **para-Kähler geometry**.

Definition

A **para-Kähler** manifold (\hat{M}, \hat{g}, K) consists of a pseudo-Riemannian manifold (\hat{M}, \hat{g}) together with a (1, 1) tensor field K parallel with respect to the Levi-Civita connection which is involutive and whose eigenbundles associated with the two eigenvalues +1 and -1 of K have the same rank.

In other words:

- \hat{M} is a 2*n*-dimensional smooth manifold;
- At each $z \in \hat{M}$, \hat{g}_z is a symmetric nondegenerate bilinear form on $T_z \hat{M}$;
- ▶ At each $z \in \hat{M}$, K_z is a linear map from $T_z \hat{M}$ to $T_z \hat{M}$
- $\hat{\nabla}K = 0$ where $\hat{\nabla}$ denote the Levi-Civita connection of \hat{g} ;
- ▶ At each $z \in \hat{M}$, $K_z^2 = \text{Id}_{T_z \hat{M}}$. K_z is therefore diagonalizable with eigenvalues ±1 and the corresponding eigenspaces $T_z^{\pm} \hat{M}$ have dimension n.

Remark

We also get for free a symplectic form $\omega = \hat{g}(K \cdot, \cdot)$.

Remark

The para-complex numbers (aka split-complex or hyperbolic numbers) are z = x + ky with $k^2 = 1$. An algebra similar to complex numbers but not a field since numbers $x \pm kx$ are not invertible.

The Kim–McCann geometry. Kim and McCann's original papers [KM10, KM12]. McCann's review [McC14]. A recent exposition [LV23, Section 2].

Para-Kähler geometry. See the reviews [AiMT09] and [CFG96].

Information geometry

Introduction

In information geometry we consider finite-dimensional parametrized subspaces of measures

 $\{\mu_{\theta}: \theta \in \Theta\} \subset \mathcal{P}(\Omega).$

Here Ω is say a domain of \mathbb{R}^d or a smooth manifold. Information geometry assumes Θ to be an *n*-dimensional smooth manifold, called *statistical manifold*. A typical problem is to optimize over the μ_{θ} , for instance the maximum likelihood problem is related to minimizing the function

$$F(\theta) = \mathrm{KL}(\nu | \mu_{\theta}),$$

where $\nu \in \mathcal{P}(\Omega)$ is given.

Example (Gaussians)

Optimize over the spaces of Gaussians $\Theta = \mathbb{R}^d \times S^d_{++}$ parametrized by $\theta = (\text{mean, covariance}).$

Example (Exponential families)

Given $s: \mathbb{R}^d \to \mathbb{R}^n$ consider the **exponential family** $\mu_{\theta}(dx) = e^{\langle s(x), \theta \rangle - A(\theta)} \nu(dx)$, with $\Theta \subset \mathbb{R}^n$. Here $A(\theta)$ ensures μ_{θ} has mass 1 and ν is a fixed reference measure on \mathbb{R}^d .

Submanifolds Σ from divergences

Consider a triple $(X \times Y, c)$, as in the Kim–McCann framework. A pair (ϕ, ψ) with $\phi: X \to \mathbb{R}$ and $\psi: Y \to \mathbb{R}$ is called *c*-conjugate if $\phi(x) = \psi^c(x) := -\inf_{y \in Y} c(x, y) + \psi(y)$ and $\psi(y) = \phi^c(y) := -\inf_{x \in X} c(x, y) + \phi(x)$. If (ϕ, ψ) is *c*-conjugate we have

 $D(x,y) := \phi(x) + \psi(y) + c(x,y) \ge 0,$

with

$$\inf_{x \in X} D(x, y) = \inf_{y \in Y} D(x, y) = 0.$$

Definition

D is called a divergence.

Then a spacelike submanifold $\Sigma \subset X \times Y$ can be constructed, under additional mild assumptions, as the set where X vanishes,

$$\Sigma = \{ (x, y) \in X \times Y : D(x, y) = 0 \}.$$

Observations

1. The cross-differences $\delta_D = \delta_c$. Therefore the Kim–McCann metrics induced by D and c are the same.

2. Why the vanishing set Σ of D(x, y) can be expected to be spacelike: if $(x, y) \in \Sigma$ and $(x + \xi, y + \eta) \in \Sigma$ then

$$\delta_D(x+\xi, y+\eta; x, y) = \underbrace{D(x+\xi, y)}_{\ge 0} + \underbrace{D(x, y+\eta)}_{\ge 0} - \underbrace{D(x, y)}_{= 0} - \underbrace{D(x+\xi, y+\eta)}_{= 0} \ge 0.$$

By 1., $\delta_D = \delta_c$. Take $\xi \to 0$ and $\eta \to 0$ then $-\nabla^2_{xy} c(x, y)(\xi, \eta) \ge 0$. (Σ is *c*-monotone).

3. Oftentimes we consider costs c(x, y) satisfying

$$\inf_{x \in X} c(x, y) = \inf_{y \in Y} c(x, y) = 0.$$

Then $(\phi = 0, \psi = 0)$ is a *c*-conjuate pair and *c* is directly a divergence, D(x, y) = c(x, y). Example. A squared Riemannian distance $c(x, y) = d^2(x, y)$. Consider cost $c(x,y) = -\langle x,y \rangle$ on $\mathbb{R}^n \times \mathbb{R}^n$. The Kim–McCann metric is

$$\hat{g} = \frac{1}{2} \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$$

Let $u \in C^2(\mathbb{R}^n)$ be a strictly convex function and consider the divergence

$$D(x,y) = u(x) + u^*(y) - \langle x, y \rangle.$$

D vanishes on $\Sigma = \{(x, \nabla u(x))\}$ and the induced Riemannian metric is Hessian,

$$g = \nabla^2 u.$$

Back to statistical manifolds. In practice the divergence D on $\Theta \times \Theta$ is often pulled back from a "divergence" \mathbb{D} on $\mathcal{P}(\Omega) \times \mathcal{P}(\Omega)$,

$$D(\theta, \theta') = \mathbb{D}(\mu_{\theta}, \mu_{\theta'}).$$

Example

The Kullback–Leibler divergence or relative entropy $\mathbb{D}(\mu, \mu') = \int_{\Omega} \log(d\mu/d\mu') d\mu$. Under certains assumptions the diagonal of $\Theta \times \Theta$ is spacelike and the Kim–McCann metric on Σ is the Fisher information

$$g_{ij}(\theta) = \int_{\Omega} \frac{\partial \ln \mu_{\theta}}{\partial \theta^{i}} \frac{\partial \ln \mu_{\theta}}{\partial \theta^{j}} \mu_{\theta}(dx).$$

Other examples. The Hellinger divergence $\mathbb{D}(\mu, \mu') = \int_{\Omega} (\sqrt{d\mu/d\nu} - \sqrt{d\mu'/d\nu})^2 d\nu$. The squared Wasserstein distance $\mathbb{D}(\mu, \mu') = W_2^2(\mu, \mu')$.

Given $s \colon \mathbb{R}^d \to \mathbb{R}^n$, recall the exponential family $\mu_{\theta}(dx) = e^{\langle s(x), \theta \rangle - A(\theta)} \nu(dx)$, with $\Theta \subset \mathbb{R}^n$. The pullback of the KL divergence takes the form

$$D(\theta, \theta') = \int_{\mathbb{R}^d} \ln\left(\frac{d\mu_\theta}{d\mu_{\theta'}}\right) d\mu_\theta = A(\theta') - A(\theta) - \langle \nabla A(\theta), \theta' - \theta \rangle.$$

This is the **Bregman divergence** of A.

Here Σ is the diagonal and the Fisher information metric metric is the Hessian metric $\nabla^2 A(\theta)$.

Let (\hat{M}, \hat{g}) be a pseudo-Riemannian manifold and $f: M \to \hat{M}$ be an **embedding**. Define the submanifold $\Sigma = f(M) \subset \hat{M}$ and $g = f^*\hat{g}$ on M (or Σ). Let U, V be tangential vector fields on Σ . To obtain an affine connection on Σ we want to project $\hat{\nabla}_U V$ onto $T\Sigma$. The classical way is to project orthogonally and obtain a connection $\nabla_U V$ on Σ . It turns out ∇ is nothing else than the Levi-Civita connection for g.

Classically there are then three notions of curvatures on Σ : R, \hat{R} and the second fundamental form $H: TM \times TM \to T^{\perp}M$ defined by

$$II(U,V) = \hat{\nabla}_U V - \nabla_U V.$$

The **mean curvature** $H \in T^{\perp}\Sigma$ is then a normal vector field defined as the trace of II (with respect to g). \hat{R}, R are intrinsic while II, H are extrinsic. Information geometry takes a different approach. Due to the special product structure $X \times Y$ it defines instead two connections ∇^1 , ∇^2 on Σ which are different from the Levi-Civita ∇ coming from g. Given tangential U, V, project onto TX and TY respectively,

 $\nabla_U^1 V = \pi^1(\hat{\nabla}_U V),$ $\nabla_U^2 V = \pi^2(\hat{\nabla}_U V).$

It turns out that $\frac{1}{2}(\nabla^1 + \nabla^2) = \nabla$. The classical (∇, H) are replaced by (∇^1, ∇^2) .

There are three notions of curvatures \hat{R} , R^1 , R^2 .

The presentation roughly follows Wong and Yang [WY22]. See also the nicely written review of Khan and Zhang [KZ22].

A classical reference for information geometry is the textbook of Amari [Ama16]. See also the review of Nielsen [Nie20] and Mishra, Kumar and Wong [MKW23].

Application to gradient descent-type schemes

We want to iteratively minimize a differentiable function $f: X \to \mathbb{R}$, where X is a smooth manifold. Since there is no metric on X, we cannot follow the "direction of steepest descent". Indeed, the differential $\nabla f(x)$ is a covector (i.e. a one-form) rather than a tangent vector.

Motivating example. Let V be an n-dimensional real vector space, and $f \in C^1(V)$. Then an update of the type $x_{k+1} - x_k = -\nabla f(x_k)$ **doesn't make sense** since $x_{k+1} - x_k \in V$ while $\nabla f(x_k) \in V^*$. But if we choose a map $T: V \to V^*$ then we can go back-and-forth between V and V* and have a working scheme. *Remark:* an inner product $\langle \cdot, \cdot \rangle$ induces a canonical map $V \to V^*$. X and $f \in C^1(X)$ are given. Choose an *n*-dimensional manifold Y (the "dual space") and a nondegenerate cost $c \in C^2(X \times Y)$. Choose a *n*-dimensional submanifold $\Sigma \subset X \times Y$ which is the graph of a diffeomorphism $T: X \to Y$. Σ acts as our one-to-one correspondence between X and Y. Define $F: X \times Y \to \mathbb{R}$ by

$$F(x,y) = f(x).$$

Note that $\hat{\nabla}F = \hat{\nabla}f \oplus 0$. The Kim-McCann metric provides **a gradient** grad $F = \hat{g}^{-1}\hat{\nabla}F$. Due to the special structure of \hat{g} and F, the gradient is of the form grad $F = 0 \oplus \eta$, where (in coordinates)

$$\eta^{\bar{\imath}} = -c^{\bar{\imath}j} \frac{\partial f}{\partial x^j}.$$

Gradient descent with a general cost (GDGC)

This suggest the following iterative method (GDGC, [LAF23]).

```
Given (x_k, y_k) \in \Sigma.

y-update: compute \exp_{(x_k, y_k)}(-\operatorname{grad} F) =: (x_k, y_{k+1})

x-update: (x_{k+1}, y_{k+1}) \in \Sigma.
```

Here exp uses the ambient Kim–McCann connection $\hat{\nabla}$ on $X \times Y$, in particular it leaves Σ . Then map back into Σ . The exponential map $\exp_{(x,y)}(0 \oplus \eta)$ admits a **closed-form formula**.

Under mild assumptions GDGC can be written as

$$-\nabla_x c(x_k, y_{k+1}) = -\nabla f(x_k),$$

$$\nabla_x c(x_{k+1}, y_{k+1}) = 0.$$

Example: mirror descent

Suppose we are given an objective function $f: V \to \mathbb{R}$ where V is an n-dimensional vector space, without inner product. Let $u \in C^2(V)$ be a strictly convex function and consider the Fenchel–Young divergence $c(x, y) = u(x) + u^*(y) - \langle x, y \rangle$ on $V \times V^*$, vanishing on the subset $\Sigma = \{(x, \nabla u(x))\} \subset V \times V^*$.

The ambient Kim–McCann metric is $\hat{g} = \frac{1}{2} \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$, i.e. $\hat{g}(\xi \oplus \eta, \xi \oplus \eta) = \langle \xi, \eta \rangle$. The

induced Riemannian metric on Σ can be written (in "x-coordinates") as the Hessian metric $g = \nabla^2 u(x)$, i.e. $g(\xi, \xi) = \nabla^2 u(x)(\xi, \xi)$. Indeed if $\xi \oplus \eta$ is tangent to Σ then $\eta = \nabla^2 u(x)\xi$. Instantiate the GDGC method: Given $x_k \in V$ and $y_k = \nabla u(x_k)$:

• y-update:
$$y_{k+1} = y_k - \nabla f(x_k)$$
 (flat connection).

• x-update $x_{k+1} = (\nabla u)^{-1}(y_{k+1})$.

We obtain the mirror descent update

$$\nabla u(x_{k+1}) - \nabla u(x_k) = -\nabla f(x_k).$$

 $f \in C^1(V)$, strictly convex $u \in C^2(V)$, Bregman cost $c(x, y) = u(y) - u(x) - \langle \nabla u(x), y - x \rangle$ on $V \times V$, with Σ =diagonal. Then GDGC=natural gradient descent

$$x_{k+1} - x_k = -\nabla^2 u(x_k)^{-1} \nabla f(x_k).$$

(M,g) Riemannian manifold, $f \in C^1(M)$, squared geodesic cost $c(x,y) = \frac{1}{2\tau} d_M^2(x,y)$ on $M \times M$ with $\tau > 0$, and Σ =diagonal. Then GDGC=Riemannian gradient descent

$$x_{k+1} = \exp_{x_k}(-\tau \nabla f(x_k)).$$

1. When $f(x) = \inf_{y \in Y} c(x,y) + h(y)$ (f is c-concave), GDGC can be formulated as the alternating minimization of

c(x,y) + h(y).

This is a **nonsmooth formulation** valid in infinite dimensions [LAF23].

2. There are implicit and forward–backward (explicit–implicit) extensions [LAF23].

3. The condition $\hat{R}(U, KU, U, KU) \geq 0$ is known as **nonnegative cross-curvature** (NNCC) [KM10, KM12]. Under NNCC convexity of the objective f along c-segments provides rates of convergence [LAF23]. Moreover NNCC admits a synthetic formulation applicable to infinite-dimensional spaces [LTV24].

Apriori estimate in optimal transport

Optimal transport setting

This section is based on [BLMR24].

X and Y are two *n*-dimensional smooth manifold, $\hat{M} \subset X \times Y$ is an open domain and $c \in C^4(\hat{M})$ is a nondegenerate cost. μ and ν are two smooth probability measures on X and Y respectively.

In the **optimal transport** problem we want to find a map $T: X \to Y$ **pushing** μ to ν , which minimizes the total cost

$$\int_{X} c(x, T(x)) \, d\mu(x). \tag{4.1}$$

1. Problem (4.1) can be formulated as a minimal maximal surface problem, $\Sigma = \operatorname{gra} T \subset \hat{M}.$

2. New, geometric proof of the Pogorelov-style Ma–Trudinger–Wang estimates

$$|DT(x)| \le C$$

(Lipschitz bound on the transport map).

Let $f: M \to \hat{M}$ be an **embedding**. $\Sigma = f(M) \subset \hat{M}$ is called a submanifold of \hat{M} . Identify $M \approx \Sigma$. If \hat{g} is a pseudo-Riemannian metric on \hat{M} then we may define $g = f^*\hat{g}$ on M (or Σ).

There are three notions of curvatures on Σ : R, \hat{R} and the second fundamental form $II: TM \times TM \to T^{\perp}M$ defined by

$$II(U,V) = \hat{\nabla}_U V - \nabla_U V.$$

The mean curvature $H \in T^{\perp}\Sigma$ is then

a normal vector field defined as the trace of ${\cal H}$ (with respect to g). Recall

the first variation formula: for compact Riemannian submanifolds the mean curvature is "minus the gradient" of the area functional.

Define the **conformal factor** $\chi \colon \hat{M} \to \mathbb{R}$ by

$$\chi(x,y)^n = \frac{d(\mu \otimes \nu)}{d \operatorname{vol}_{\mathrm{KM}}} = \frac{d\mu/dx(x)d\nu/dy(y)}{|\det \nabla_{xy}c(x,y)|},$$

where vol_{KM} denotes the volume form of the Kim–McCann metric and $d\mu/dx$, $d\nu/dy$ denote the densities of μ and ν in local coordinates.

In [?] Kim, McCann and Warren introduced the pseudo-Riemannian metric on \hat{M}

$$\hat{g} = \chi(x,y) \begin{pmatrix} 0 & -\nabla_{xy}^2 c \\ -\nabla_{xy}^2 c & 0 \end{pmatrix}.$$
(4.2)

Kim, McCann and Warren show

Theorem ([KMW10])

For the Kim-McCann-Warren metric (4.2), the submanifold $\Sigma \subset \hat{M}$ is spacelike maximizing. In particular it has zero mean curvature.

A priori estimate

Recall we are interested to show $|DT| \leq C$. This can be shown to be equivalent to an upper bound on g, where g denote the restriction of \hat{g} to Σ . Geometrically, g to be compared to <u>something</u>. We therefore fix an ambient **Riemannian metric** \hat{S} on \hat{M} and denote by S its restriction to Σ . There are two main ingredients. **Ingredient 1.** The Kim–McCann–Warren metric satisfies on Σ

$$\operatorname{vol}(g) = \mu_i$$

therefore the product of the eigenvalues of g is bounded above and below. Ingredient 2. the Ma–Trudinger–Wang condition ($\kappa > 0$)

 $\hat{R}^{\mathrm{KM}}(U, KU, U, KU) \ge \kappa \left(\hat{S}(U, U) \hat{S}(KU, KU) - \hat{S}(U, KU)^2 \right)$

for null U i.e. $\hat{g}(U, U) = 0$.

Remarks. $\hat{R}^{\text{KM}}(U, KU, U, KU) = \hat{Q}(U)$ is the para-Kähler quadrilinear form. $\hat{S}(U, U)\hat{S}(V, V) - \hat{S}(U, V)^2$: transforms like a curvature tensor. Approach: bound $g \ge C^{-1}S$ on Σ , i.e.

$$S \leq Cg.$$

Proposition ([BLMR24])

At any point $p \in \Sigma$, let (e_i) denote a g-orthonormal basis of $T_p\Sigma$ that diagonalizes S. Then at p,

$$\sum_{l=1}^{n} \hat{R}(e_l, e_n, e_l, e_n) \le \frac{1}{2} \frac{(\Delta S)(e_n, e_n)}{S(e_n, e_n)} + C \sum_{l=1}^{n} S(e_l, e_l).$$

Maximum principle. At a point $p_0 \in \Sigma$ where S maximizes its largest eigenvalue λ_n relative to g we have $(\Delta S)(e_n, e_n) \leq 0$, where (e_i) is g-orthonormal and $S(e_i, e_j) = \lambda_i \delta_{ij}$. Therefore at the point p_0 ,

$$\sum_{l=1}^{n-1} \hat{R}(e_l, e_n, e_l, e_n) \le CS(e_n, e_n).$$

Using the MTW condition (Ingredient 2):

$$\sum_{l=1}^{n-1} \lambda_l \le C.$$

Ingredient 1 (Monge–Ampère equation) \approx product of the eigenvalues is bounded above and below. Conclusion:

 $\lambda_n \le C.$

Formal Taylor expansion of entropic optimal transport

This section is based on work in progress.

X and Y are two *n*-dimensional smooth manifolds, and $c \in C^4(X \times Y)$ is a nondegenerate cost. μ and ν are two smooth probability measures on X and Y respectively. Finally $\varepsilon > 0$ is a temperature parameter.

The entropic optimal transport problem is

$$\mathcal{T}_{c,\varepsilon}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \iint_{X \times Y} c(x,y) \, d\pi(x,y) + \varepsilon \operatorname{KL}(\pi|\mu \times \nu).$$

Here $\Pi(\mu, \nu)$ consists of all the joint probability measures on $X \times Y$ with respective marginals μ and ν . When $\varepsilon = 0$ we recover the optimal transport problem. Under some assumptions π is concentrated on a set Σ which is the graph of a map $T: X \to Y$. When $\varepsilon > 0$, the support of π is all of $X \times Y$.

Kim–McCann geometry

Let \hat{g} denote the Kim–McCann metric on $X \times Y$ with respect to c(x, y) and Σ the graph of an optimal transport map (i.e. taking $\varepsilon = 0$).

Question: formal asymptotics as $\varepsilon \to 0$.

Let H denote the mean curvature of Σ and K the para-complex structure. Then KH is a tangential vector field. Let π_0 denote the optimal transport plan (for $\varepsilon = 0$). Solve for a potential $V: \Sigma \to \mathbb{R}$ the elliptic PDE $\Delta_{\pi} V = \operatorname{div}_{\pi}(KH)$, in the weak sense

$$\forall h \in C_c^{\infty}(\Sigma), \quad \int_{\Sigma} g(\nabla V, \nabla h) \, d\pi = \int_{\Sigma} g(KH, \nabla h) \, d\pi.$$

This is the natural projection of KH onto gradient vector fields.

Theorem (Formal)

Define $f: \Sigma \to \mathbb{R}$ by $e^{-V}\mu = e^{-2f} \operatorname{vol}(g)$. Then

$$\phi_{\varepsilon} = \phi_0 + \varepsilon f + o(\varepsilon).$$

Theorem (Formal)

$$\mathcal{T}_{c,\varepsilon}(\mu,\nu) = \mathcal{T}_{c,0}(\mu,\nu) - \varepsilon \ln(2\pi\varepsilon)^{d/2} - \varepsilon H(\pi_0|\operatorname{vol}(g))$$
$$+ \frac{\varepsilon^2}{8} \int_{\Sigma} \left[|\nabla \ln(\pi_0/\operatorname{vol}(g))|^2 + \frac{1}{4}\hat{R} + R + \frac{5}{3}|H|^2 - |\nabla V|^2 \right] d\pi_0 + o(\varepsilon^2)$$

Remark: for the quadratic cost on Euclidean space $c(x,y) = |x - y|^2$, Conforti and Tamanini [CT21] show the ε^2 to be

$$\frac{\varepsilon^2}{8} \int_0^1 \operatorname{FI}(\rho_t) \, dt,$$

where FI is the Fisher information and ρ_t the McCann interpolation between μ and ν .

- D. V. Alekseevski[~] i, K. Medori, and A. Tomassini, <u>Homogeneous para-Kählerian</u> <u>Einstein manifolds</u>, Uspekhi Mat. Nauk **64** (2009), no. 1(385), 3–50, doi:10.1070/RM2009v064n01ABEH004591.
- Shun-ichi Amari, <u>Information geometry and its applications</u>, Applied Mathematical Sciences, vol. 194, Springer, [Tokyo], 2016, doi:10.1007/978-4-431-55978-8.
- Simon Brendle, Flavien Léger, Robert J. McCann, and Cale Rankin, <u>A geometric</u> approach to apriori estimates for optimal transport maps, J. Reine Angew. Math. 817 (2024), 251-266, doi:10.1515/crelle-2024-0071.
- V. Cruceanu, P. Fortuny, and P. M. Gadea, <u>A survey on paracomplex geometry</u>, Rocky Mountain J. Math. 26 (1996), no. 1, 83–115, doi:10.1216/rmjm/1181072105.
- Giovanni Conforti and Luca Tamanini, <u>A formula for the time derivative of the entropic cost and applications</u>, J. Funct. Anal. 280 (2021), no. 11, Paper No. 108964, 48, doi:10.1016/j.jfa.2021.108964.

- Young-Heon Kim and Robert J. McCann, <u>Continuity</u>, curvature, and the general covariance of optimal transportation, J. Eur. Math. Soc. (JEMS) **12** (2010), no. 4, 1009–1040, doi:10.4171/JEMS/221.
- <u>Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular)</u>, J. Reine Angew. Math. 664 (2012), 1–27, doi:10.1515/CRELLE.2011.105.
- Young-Heon Kim, Robert J. McCann, and Micah Warren, <u>Pseudo-Riemannian geometry</u> <u>calibrates optimal transportation</u>, Math. Res. Lett. **17** (2010), no. 6, 1183–1197, doi:10.4310/MRL.2010.v17.n6.a16.
- ► Gabriel Khan and Jun Zhang, When optimal transport meets information geometry, Inf. Geom. 5 (2022), no. 1, 47–78, doi:10.1007/s41884-022-00066-w.
- Flavien Léger and Pierre-Cyril Aubin-Frankowski, Gradient descent with a general cost, 2023, URL: https://arxiv.org/abs/2305.04917, arXiv:2305.04917.

- Flavien Léger, Gabriele Todeschi, and François-Xavier Vialard, <u>Nonnegative</u> cross-curvature in infinite dimensions: synthetic definition and spaces of measures, URL: https://arxiv.org/abs/2409.18112, arXiv:2409.18112.
- Flavien Léger and François-Xavier Vialard, <u>A geometric Laplace method</u>, Pure Appl. Anal. 5 (2023), no. 4, 1041–1080, doi:10.2140/paa.2023.5.1041.
- Robert J. McCann, Exact solutions to the transportation problem on the line, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1984, 1341–1380, doi:10.1098/rspa.1999.0364.
- <u>A glimpse into the differential topology and geometry of optimal transport</u>, Discrete Contin. Dyn. Syst. **34** (2014), no. 4, 1605–1621, doi:10.3934/dcds.2014.34.1605.
- Kumar Vijay Mishra, M. Ashok Kumar, and Ting-Kam Leonard Wong, <u>Information geometry for the working information theorist</u>, 2023, URL: https://arxiv.org/abs/2310.03884, arXiv:2310.03884.

- ▶ Frank Nielsen, <u>An elementary introduction to information geometry</u>, Entropy **22** (2020), no. 10, Paper No. 1100, 61, doi:10.3390/e22101100.
- Ting-Kam Leonard Wong and Jiaowen Yang, <u>Pseudo-Riemannian geometry encodes</u> information geometry in optimal transport, Inf. Geom. 5 (2022), no. 1, 131–159, doi:10.1007/s41884-021-00053-7.