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The Kim–McCann geometry



The Kim–McCann framework

X and Y are n-dimensional smooth manifolds, and M̂ ⊂ X × Y is an open subset.
Consider a fonction c ∈ C2(M̂). M̂ is the ambient space and c is a cost function.
We always assume that the cost c(x, y) is nondegenerate in the sense that for each
(x, y) ∈ M̂ , the linear map ∇2

xyc(x, y) : TxX → T ∗
y Y is one-to-one.

Definition (Kim and McCann [KM10])
The Kim–McCann metric is the pseudo-Riemannian metric on M̂ defined by

ĝ(x,y) =
1

2

(
0 −∇2

xyc
−∇2

xyc 0

)
.

Recall: pseudo-Riemannian means: at each z ∈ M̂ , ĝz is a symmetric nondegenerate
bilinear form on TzM̂ × TzM̂ .
Remark. The full (x, y) Hessian of c is not well-defined, but the product structure makes
the cross terms ∇2

xyc well-defined. Indeed for fixed y ∈ Y , x 7→ ∇yc(x, y) map to the same
space T ∗

y Y .



First properties

1. M̂ open ⊂ X × Y makes T(x,y)M̂ split as TxX ⊕ TyY . If U = ξ ⊕ η ∈ T(x,y)M̂ with
ξ ∈ TxX and η ∈ TyY then

ĝ(U,U) = −∇2
xyc(x, y)(ξ, η) = − ∂2c

∂xi∂yȷ̄
ξiηȷ̄.

2. ĝ has signature (n, n). (Use K(ξ ⊕ η) = (−ξ ⊕ η).)

3. −∇2
xyc is unaffected by adding to c(x, y) a function of x or a function of y. The

Kim–McCann metric captures only the interaction between x and y.



Spacelike submanifolds

Let f : M → M̂ be an embedding. Σ := f(M) ⊂ M̂ is called a submanifold of M̂ . We
often identify M ≈ Σ. If ĝ is a pseudo-Riemannian metric on M̂ then we may define the
pulled back metric g = f∗ĝ on M (≈ the restriction of ĝ to Σ).

Definition
Σ is spacelike if g is Riemannian.

This means
for any nonzero tangential vector U , g(U,U) = ĝ(U,U) > 0.

Most often, Σ is given as the graph of a map T : X → Y .



Example

X = Y = Rn, M̂ = Rn × Rn, c(x, y) = −⟨x, y⟩. Then

ĝ(x,y) =
1

2

(
0 In
In 0

)
.

In other words,
ĝ(ξ ⊕ η, ξ ⊕ η) = ⟨ξ, η⟩.

Same Kim–McCann metric ĝ for the quadratic cost c(x, y) = 1
2 |x− y|2 or more generally

Fenchel–Young costs
c(x, y) = u(x) + u∗(y)− ⟨x, y⟩,

where u : Rn → R is a convex function (more on this later).



Motivation from Optimal Transport

Optimal transport consists of matching a distribution of points in X with another
distribution of points in Y minimizing the total cost.

The cross-difference introduced by McCann [McC99, McC14] is

δc(x
′, y′;x, y) = [c(x, y′) + c(x′, y)]− [c(x, y) + c(x′, y′)]

Then
δc(x+ ξ, y + η;x, y) = −∇2

xyc(x, y)(ξ, η) + o(|ξ|2 + |η|2)



Geodesics
Consider local coordinates xi on X and yı̄ on Y . The only nonzero Christoffel symbols Γγαβ
are when α, β, γ are all non-barred or all barred. Then

Γkij = ckm̄cm̄ij , Γk̄ı̄ȷ̄ = ck̄mcmı̄ȷ̄.

In general a geodesic is of the form (x(t), y(t)). Those geodesics for which either the first
on second component is constant in time are of particular interest. They are called
c-segments and admit a “closed form” formula. Indeed (x, y(t)) is a geodesic if

d2

dt2
∇xc(x, y(t)) = 0,

while (x(t), y) is a geodesic if
d2

dt2
∇yc(x(t), y) = 0.

For example, the geodesic joining (x, y0) to (x, y1) takes the form

∇xc(x, y(t)) = (1− t)∇xc(x, y0) + t∇xc(x, y0).



Curvature

Let R̂ denote the Riemann curvature of ĝ. In local coordinates xi, yı̄, the only nonzero of
R̂αβγδ are when two indices are barred and two unbarred and α, β (thus γ, δ) are of
opposite type.

This can be rephrased as follows. Define Kz : TzM̂ → TzM̂ by K(ξ ⊕ η) = (−ξ)⊕ η and
consider the quadrilinear form Q(U) = R̂(U,KU,U,KU).

Proposition
R̂ is uniquely determined by Q.

Remark. In general pseudo-Riemannian geometry the Riemann tensor R is uniquely
determined by the unnormalized sectional curvature R(U, V, U, V ).



Para-Kähler geometry

The Kim–McCann geometry is an instance of para-Kähler geometry.

Definition
A para-Kähler manifold (M̂, ĝ,K) consists of a pseudo-Riemannian manifold (M̂, ĝ)
together with a (1, 1) tensor field K parallel with respect to the Levi-Civita connection
which is involutive and whose eigenbundles associated with the two eigenvalues +1 and −1
of K have the same rank.

In other words:
▶ M̂ is a 2n-dimensional smooth manifold;
▶ At each z ∈ M̂ , ĝz is a symmetric nondegenerate bilinear form on TzM̂ ;
▶ At each z ∈ M̂ , Kz is a linear map from TzM̂ to TzM̂
▶ ∇̂K = 0 where ∇̂ denote the Levi-Civita connection of ĝ;
▶ At each z ∈ M̂ , K2

z = IdTzM̂
. Kz is therefore diagonalizable with eigenvalues ±1 and

the corresponding eigenspaces T±
z M̂ have dimension n.



Remark
We also get for free a symplectic form ω = ĝ(K·, ·).

Remark
The para-complex numbers (aka split-complex or hyperbolic numbers) are z = x+ ky with
k2 = 1. An algebra similar to complex numbers but not a field since numbers x± kx are
not invertible.



References

The Kim–McCann geometry. Kim and McCann’s original papers [KM10, KM12].
McCann’s review [McC14]. A recent exposition [LV23, Section 2].

Para-Kähler geometry. See the reviews [AiMT09] and [CFG96].



Information geometry



Introduction
In information geometry we consider finite-dimensional parametrized subspaces of measures

{µθ : θ ∈ Θ} ⊂ P(Ω).

Here Ω is say a domain of Rd or a smooth manifold. Information geometry assumes Θ to
be an n-dimensional smooth manifold, called statistical manifold. A typical problem is to
optimize over the µθ, for instance the maximum likelihood problem is related to
minimizing the function

F (θ) = KL(ν|µθ),
where ν ∈ P(Ω) is given.

Example (Gaussians)
Optimize over the spaces of Gaussians Θ = Rd × Sd++ parametrized by
θ = (mean, covariance).

Example (Exponential families)
Given s : Rd → Rn consider the exponential family µθ(dx) = e⟨s(x),θ⟩−A(θ)ν(dx), with
Θ ⊂ Rn. Here A(θ) ensures µθ has mass 1 and ν is a fixed reference measure on Rd.



Submanifolds Σ from divergences

Consider a triple (X × Y, c), as in the Kim–McCann framework. A pair (ϕ, ψ) with
ϕ : X → R and ψ : Y → R is called c-conjugate if ϕ(x) = ψc(x) := − infy∈Y c(x, y) + ψ(y)
and ψ(y) = ϕc(y) := − infx∈X c(x, y) + ϕ(x). If (ϕ, ψ) is c-conjugate we have

D(x, y) := ϕ(x) + ψ(y) + c(x, y) ≥ 0,

with
inf
x∈X

D(x, y) = inf
y∈Y

D(x, y) = 0.

Definition
D is called a divergence.

Then a spacelike submanifold Σ ⊂ X × Y can be constructed, under additional mild
assumptions, as the set where X vanishes,

Σ = {(x, y) ∈ X × Y : D(x, y) = 0}.



Observations

1. The cross-differences δD = δc. Therefore the Kim–McCann metrics induced by D and c
are the same.

2. Why the vanishing set Σ of D(x, y) can be expected to be spacelike: if (x, y) ∈ Σ and
(x+ ξ, y + η) ∈ Σ then

δD(x+ ξ, y + η;x, y) = D(x+ ξ, y)︸ ︷︷ ︸
≥0

+D(x, y + η)︸ ︷︷ ︸
≥0

−D(x, y)︸ ︷︷ ︸
=0

−D(x+ ξ, y + η)︸ ︷︷ ︸
=0

≥ 0.

By 1., δD = δc. Take ξ → 0 and η → 0 then −∇2
xyc(x, y)(ξ, η) ≥ 0. (Σ is c-monotone).

3. Oftentimes we consider costs c(x, y) satisfying

inf
x∈X

c(x, y) = inf
y∈Y

c(x, y) = 0.

Then (ϕ = 0, ψ = 0) is a c-conjuate pair and c is directly a divergence, D(x, y) = c(x, y).
Example. A squared Riemannian distance c(x, y) = d2(x, y).



Example: Fenchel–Young gap functions

Consider cost c(x, y) = −⟨x, y⟩ on Rn × Rn. The Kim–McCann metric is

ĝ =
1

2

(
0 In
In 0

)
.

Let u ∈ C2(Rn) be a strictly convex function and consider the divergence

D(x, y) = u(x) + u∗(y)− ⟨x, y⟩.

D vanishes on Σ = {(x,∇u(x))} and the induced Riemannian metric is Hessian,

g = ∇2u.



Pulled back divergences

Back to statistical manifolds. In practice the divergence D on Θ×Θ is often pulled back
from a “divergence” D on P(Ω)× P(Ω),

D(θ, θ′) = D(µθ, µθ′).

Example
The Kullback–Leibler divergence or relative entropy D(µ, µ′) =

∫
Ω
log(dµ/dµ′) dµ.

Under certains assumptions the diagonal of Θ×Θ is spacelike and the Kim–McCann
metric on Σ is the Fisher information

gij(θ) =

∫
Ω

∂ lnµθ
∂θi

∂ lnµθ
∂θj

µθ(dx).

Other examples. The Hellinger divergence D(µ, µ′) =
∫
Ω
(
√
dµ/dν −

√
dµ′/dν)2 dν.

The squared Wasserstein distance D(µ, µ′) =W 2
2 (µ, µ

′).



Example: exponential families

Given s : Rd → Rn, recall the exponential family µθ(dx) = e⟨s(x),θ⟩−A(θ)ν(dx), with
Θ ⊂ Rn. The pullback of the KL divergence takes the form

D(θ, θ′) =

∫
Rd

ln
( dµθ
dµθ′

)
dµθ = A(θ′)−A(θ)− ⟨∇A(θ), θ′ − θ⟩.

This is the Bregman divergence of A.
Here Σ is the diagonal and the Fisher information metric metric is the Hessian metric
∇2A(θ).



Classical submanifold theory

Let (M̂, ĝ) be a pseudo-Riemannian manifold and f : M → M̂ be an embedding. Define
the submanifold Σ = f(M) ⊂ M̂ and g = f∗ĝ on M (or Σ).
Let U, V be tangential vector fields on Σ. To obtain an affine connection on Σ we want to
project ∇̂UV onto TΣ. The classical way is to project orthogonally and obtain a
connection ∇UV on Σ. It turns out ∇ is nothing else than the Levi-Civita connection for g.

Classically there are then three notions of curvatures on Σ: R, R̂ and the second
fundamental form II : TM × TM → T⊥M defined by

II(U, V ) = ∇̂UV −∇UV.

The mean curvature H ∈ T⊥Σ is then a normal vector field defined as the trace of II
(with respect to g).
R̂, R are intrinsic while II, H are extrinsic.



Information geometry’s dual connections

Information geometry takes a different approach. Due to the special product structure
X × Y it defines instead two connections ∇1, ∇2 on Σ which are different from the
Levi-Civita ∇ coming from g. Given tangential U, V , project onto TX and TY
respectively,

∇1
UV = π1(∇̂UV ),

∇2
UV = π2(∇̂UV ).

It turns out that 1
2 (∇

1 +∇2) = ∇. The classical (∇, II) are replaced by (∇1,∇2).

There are three notions of curvatures R̂, R1, R2.



References

The presentation roughly follows Wong and Yang [WY22]. See also the nicely written
review of Khan and Zhang [KZ22].
A classical reference for information geometry is the textbook of Amari [Ama16]. See also
the review of Nielsen [Nie20] and Mishra, Kumar and Wong [MKW23].



Application to gradient descent-type schemes



Introduction

We want to iteratively minimize a differentiable function f : X → R, where X is a smooth
manifold. Since there is no metric on X, we cannot follow the “direction of steepest
descent”. Indeed, the differential ∇f(x) is a covector (i.e. a one-form) rather than a
tangent vector.

Motivating example. Let V be an n-dimensional real vector space, and f ∈ C1(V ).
Then an update of the type xk+1 − xk = −∇f(xk) doesn’t make sense since
xk+1 − xk ∈ V while ∇f(xk) ∈ V ∗. But if we choose a map T : V → V ∗ then we can go
back-and-forth between V and V ∗ and have a working scheme. Remark: an inner product
⟨·, ·⟩ induces a canonical map V → V ∗.



Basic setting

X and f ∈ C1(X) are given. Choose an n-dimensional manifold Y (the “dual space”) and a
nondegenerate cost c ∈ C2(X × Y ). Choose a n-dimensional submanifold Σ ⊂ X × Y
which is the graph of a diffeomorphism T : X → Y . Σ acts as our one-to-one
correspondence between X and Y .
Define F : X × Y → R by

F (x, y) = f(x).

Note that ∇̂F = ∇̂f ⊕ 0. The Kim–McCann metric provides a gradient gradF = ĝ−1∇̂F .
Due to the special structure of ĝ and F , the gradient is of the form gradF = 0⊕ η, where
(in coordinates)

ηı̄ = −cı̄j ∂f
∂xj

.



Gradient descent with a general cost (GDGC)

This suggest the following iterative method (GDGC, [LAF23]).

Given (xk, yk) ∈ Σ.
y-update: compute ˆexp(xk,yk)

(− gradF ) =: (xk, yk+1)
x-update: (xk+1, yk+1) ∈ Σ.

Here ˆexp uses the ambient Kim–McCann connection ∇̂ on X × Y , in particular it leaves Σ.
Then map back into Σ.
The exponential map ˆexp(x,y)(0⊕ η) admits a closed-form formula.

Under mild assumptions GDGC can be written as

−∇xc(xk, yk+1) = −∇f(xk),
∇xc(xk+1, yk+1) = 0.



Example: mirror descent

Suppose we are given an objective function f : V → R where V is an n-dimensional vector
space, without inner product. Let u ∈ C2(V ) be a strictly convex function and consider
the Fenchel–Young divergence c(x, y) = u(x) + u∗(y)− ⟨x, y⟩ on V × V ∗, vanishing on the
subset Σ = {(x,∇u(x))} ⊂ V × V ∗.

The ambient Kim–McCann metric is ĝ =
1

2

(
0 In
In 0

)
, i.e. ĝ(ξ ⊕ η, ξ ⊕ η) = ⟨ξ, η⟩. The

induced Riemannian metric on Σ can be written (in “x-coordinates”) as the Hessian metric
g = ∇2u(x), i.e. g(ξ, ξ) = ∇2u(x)(ξ, ξ). Indeed if ξ ⊕ η is tangent to Σ then η = ∇2u(x)ξ.
Instantiate the GDGC method: Given xk ∈ V and yk = ∇u(xk):
▶ y-update: yk+1 = yk −∇f(xk) (flat connection).
▶ x-update xk+1 = (∇u)−1(yk+1).

We obtain the mirror descent update

∇u(xk+1)−∇u(xk) = −∇f(xk).



Other examples

f ∈ C1(V ), strictly convex u ∈ C2(V ), Bregman cost c(x, y) = u(y)− u(x)− ⟨∇u(x), y− x⟩
on V × V , with Σ =diagonal. Then GDGC=natural gradient descent

xk+1 − xk = −∇2u(xk)
−1∇f(xk).

(M, g) Riemannian manifold, f ∈ C1(M), squared geodesic cost c(x, y) = 1
2τ d

2
M (x, y) on

M ×M with τ > 0, and Σ =diagonal. Then GDGC=Riemannian gradient descent

xk+1 = expxk
(−τ∇f(xk)).



More to explore

1. When f(x) = infy∈Y c(x, y) + h(y) (f is c-concave), GDGC can be formulated as the
alternating minimization of

c(x, y) + h(y).

This is a nonsmooth formulation valid in infinite dimensions [LAF23].

2. There are implicit and forward–backward (explicit–implicit) extensions [LAF23].

3. The condition R̂(U,KU,U,KU) ≥ 0 is known as nonnegative cross-curvature
(NNCC) [KM10, KM12]. Under NNCC convexity of the objective f along c-segments
provides rates of convergence [LAF23]. Moreover NNCC admits a synthetic formulation
applicable to infinite-dimensional spaces [LTV24].



Apriori estimate in optimal transport



Optimal transport setting
This section is based on [BLMR24].
X and Y are two n-dimensional smooth manifold, M̂ ⊂ X × Y is an open domain and
c ∈ C4(M̂) is a nondegenerate cost. µ and ν are two smooth probability measures on X
and Y respectively.
In the optimal transport problem we want to find a map T : X → Y pushing µ to ν,
which minimizes the total cost ∫

X

c(x, T (x)) dµ(x). (4.1)

1. Problem (4.1) can be formulated as a minimal maximal surface problem,
Σ = graT ⊂ M̂ .

2. New, geometric proof of the Pogorelov-style Ma–Trudinger–Wang estimates

|DT (x)| ≤ C

(Lipschitz bound on the transport map).



Background on submanifold theory

Let f : M → M̂ be an embedding. Σ = f(M) ⊂ M̂ is called a submanifold of M̂ . Identify
M ≈ Σ. If ĝ is a pseudo-Riemannian metric on M̂ then we may define g = f∗ĝ on M (or
Σ).
There are three notions of curvatures on Σ: R, R̂ and the second fundamental form
II : TM × TM → T⊥M defined by

II(U, V ) = ∇̂UV −∇UV.

The mean curvature H ∈ T⊥Σ is then
a normal vector field defined as the trace of II (with respect to g).
Recall
the first variation formula: for compact Riemannian submanifolds
the mean curvature is “minus the gradient” of the area functional.



Kim–McCann–Warren

Define the conformal factor χ : M̂ → R by

χ(x, y)n =
d(µ⊗ ν)

d volKM
=
dµ/dx(x)dν/dy(y)

|det∇xyc(x, y)|
,

where volKM denotes the volume form of the Kim–McCann metric and dµ/dx, dν/dy
denote the densities of µ and ν in local coordinates.
In [?] Kim, McCann and Warren introduced the pseudo-Riemannian metric on M̂

ĝ = χ(x, y)

(
0 −∇2

xyc
−∇2

xyc 0

)
. (4.2)

Kim, McCann and Warren show

Theorem ([KMW10])
For the Kim–McCann-Warren metric (4.2), the submanifold Σ ⊂ M̂ is spacelike
maximizing. In particular it has zero mean curvature.



A priori estimate

Recall we are interested to show |DT | ≤ C. This can be shown to be equivalent to an
upper bound on g, where g denote the restriction of ĝ to Σ. Geometrically, g to be
compared to something. We therefore fix an ambient Riemannian metric Ŝ on M̂ and
denote by S its restriction to Σ. There are two main ingredients.
Ingredient 1. The Kim–McCann–Warren metric satisfies on Σ

vol(g) = µ,

therefore the product of the eigenvalues of g is bounded above and below.
Ingredient 2. the Ma–Trudinger–Wang condition (κ > 0)

R̂KM(U,KU,U,KU) ≥ κ
(
Ŝ(U,U)Ŝ(KU,KU)− Ŝ(U,KU)2

)
for null U i.e. ĝ(U,U) = 0.

Remarks. R̂KM(U,KU,U,KU) = Q̂(U) is the para-Kähler quadrilinear form.
Ŝ(U,U)Ŝ(V, V )− Ŝ(U, V )2: transforms like a curvature tensor.



Approach: bound g ≥ C−1S on Σ, i.e.

S ≤ Cg.

Proposition ([BLMR24])
At any point p ∈ Σ, let (ei) denote a g-orthonormal basis of TpΣ that diagonalizes S. Then
at p,

n∑
l=1

R̂(el, en, el, en) ≤
1

2

(∆S)(en, en)

S(en, en)
+ C

n∑
l=1

S(el, el).

Maximum principle. At a point p0 ∈ Σ where S maximizes its largest eigenvalue λn
relative to g we have (∆S)(en, en) ≤ 0, where (ei) is g-orthonormal and S(ei, ej) = λiδij .
Therefore at the point p0,

n−1∑
l=1

R̂(el, en, el, en) ≤ CS(en, en).



Using the MTW condition (Ingredient 2):

n−1∑
l=1

λl ≤ C.

Ingredient 1 (Monge–Ampère equation) ≈ product of the eigenvalues is bounded above
and below. Conclusion:

λn ≤ C.



Formal Taylor expansion of entropic optimal transport



Problem formulation

This section is based on work in progress.
X and Y are two n-dimensional smooth manifolds, and c ∈ C4(X × Y ) is a nondegenerate
cost. µ and ν are two smooth probability measures on X and Y respectively. Finally ε > 0
is a temperature parameter.
The entropic optimal transport problem is

Tc,ε(µ, ν) = min
π∈Π(µ,ν)

∫∫
X×Y

c(x, y) dπ(x, y) + εKL(π|µ× ν).

Here Π(µ, ν) consists of all the joint probability
measures on X × Y with respective marginals µ and ν.
When ε = 0 we recover
the optimal transport problem. Under some assumptions π is
concentrated on a set Σ which is the graph of a map T : X → Y .
When ε > 0, the support of π is all of X × Y .



Kim–McCann geometry

Let ĝ denote the Kim–McCann metric on X × Y with respect to c(x, y) and Σ the graph of
an optimal transport map (i.e. taking ε = 0).

ε = 0
Σ = zero set of the divergence
ϕ0(x) + ψ0(y) + c(x, y) ≥ 0.

ε > 0

πε(dx, dy) = e−[ϕε(x)+ψε(y)+c(x,y)]/εµ(dx)ν(dy)

Question: formal asymptotics as ε→ 0.



Formal results

Let H denote the mean curvature of Σ and K the para-complex structure. Then KH is a
tangential vector field. Let π0 denote the optimal transport plan (for ε = 0).
Solve for a potential V : Σ → R the elliptic PDE ∆πV = divπ(KH), in the weak sense

∀h ∈ C∞
c (Σ),

∫
Σ

g(∇V,∇h) dπ =

∫
Σ

g(KH,∇h) dπ.

This is the natural projection of KH onto gradient vector fields.

Theorem (Formal)
Define f : Σ → R by e−V µ = e−2f vol(g). Then

ϕε = ϕ0 + εf + o(ε).



Formal results

Theorem (Formal)

Tc,ε(µ, ν) = Tc,0(µ, ν)− ε ln(2πε)d/2 − εH(π0| vol(g))

+
ε2

8

∫
Σ

[
|∇ ln(π0/ vol(g))|2 +

1

4
R̂+R+

5

3
|II|2 − |∇V |2

]
dπ0 + o(ε2)

Remark: for the quadratic cost on Euclidean space c(x, y) = |x− y|2, Conforti and
Tamanini [CT21] show the ε2 to be

ε2

8

∫ 1

0

FI(ρt) dt,

where FI is the Fisher information and ρt the McCann interpolation between µ and ν.
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